than primary position Hess screen deviations (which may be a normal finding), I predict that they would find, as we have, that their type I patients had little difficulty with postoperative diplopia, whereas their type II patients would show an alignment shift toward the area of decompression proportional to the amount of retroplacement achieved.

WILLIAM R. NUNERY, MD
JEREMIAH TAO, MD
Indianapolis, Indiana

References


Author reply

Dear Editor:

We thank Drs Nunery and Tao for their interest in our article. We agree that patients without motility restriction (type II patients) will have diplopia postoperatively (83%). In addition, patients who develop new-onset diplopia in our group were older, had more preoperative exophthalmos (Pearson bivariate correlation).

In summary, our findings are similar to those in Dr Nunery’s previous reports, and automated Hess testing may represent a more accurate way of assessing ocular alignment in thyroid-related orbitopathy patients.

GUY J. BEN SIMON, MD
Tel Aviv, Israel

SYED M. AHAMD, MD
SEONGMU LEE, MD
DEBBIE Y. WANG, BS
ROBERT M. SCHWARCZ, MD
JOHN D. MCCANN, MD, PhD
ROBERT A. GOLDBERG, MD
Los Angeles, California

References


Treatment of Unilateral Congenital Ptosis

Dear Editor:

A frontalis suspension sling procedure is considered the gold standard for the treatment of poor-function congenital ptosis, and a bilateral approach is recommended for the treatment of unilateral forms by most authors.1–3 Advocates of bilateral surgery claim an improved symmetry during eyelid closure and blinking and in down gaze. On the other hand, bilateral surgery puts both eyes at risk of postoperative complications such as lagophthalmos, exposure keratopathy, upper lid entropion, eyelash ptosis, absent eyelid crease, overhanging skin fold requiring blepharoplasty, and superior oblique palsy.2 In a recent article, Kersten et al reported a 95% rate of good to excellent results in a large series of patients affected by unilateral poor function ptosis who underwent a unilateral frontalis sling.4 Their series
Letters to the Editor

Francesco P. Bernardini, MD
Martín H. Devoto, MD
Enrico Priolo, MD
Genova, Italy

References


Extraocular Muscle Myositis

Dear Editor:

Injections in the glabellar region can be associated with ocular complications, as the area is rich in arterial anastomoses. Injections in this area may reach several different arteries, among them the ophthalmic artery and the retina’s central artery, or the choroidal circulation and cause blindness. Polymethyl methacrylate (PMMA) as microspheres is used to fill facial wrinkles as a subdermal implant. The microspheres are deposited permanently in the tissue, and as they are completely involved by collagen fibers, they increase the tissue’s thickness, providing stable results.

Orbital myositis is an inflammatory disorder of the extraocular musculature. The common symptoms associated with the disorder are pain during ocular movement, periorbital edema, diplopia, ophthalmoplegia, ptosis, conjunctival ecchymosis, and propstosis. The diagnosis of myositis of the extraocular muscle may be confirmed by computed tomography (CT) scan, which demonstrates contrast alteration, muscle enlarging, and irregularity. The diminished flexibility of the extraocular muscle, seen in the ultrasonography, is also a typical finding associated with myositis.

We have treated a 47-year-old white female patient, who underwent PMMA injection administered by a plastic surgeon, with the intention of correcting wrinkles. She developed myositis of the extraocular musculature. Soon after the injection, the patient developed eyelid ptosis on the left and diplopia due to extraocular muscle dysfunction in the left eye. At this point, prednisone (60 mg) was prescribed for 15 days, and after this initial period, the dose was gradually reduced, completing the treatment in 60 days. The patient said that 2 days after starting the treatment she experienced regression of symptoms, and the ptosis disappeared. During the ophthalmologic assessment, 12 days after the procedure there was a hypofunction of the left medial rectus muscle and a −2